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—A product of the specific Lagrangian and the entropy factor
is defined. Its positive definiteness is stated for the proper coupling
constant. The passage from statistical mechanics to quantum field
theory is performed by Wick rotation. The Green function (a
convolution of the spectral amplitude and the propagator) is positive.
Masses of quasiparticles are computed as residues. The role of the
zeta derivative at zeta zeros is then highlighted, and the correspondent
low bound is obtained.
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I. STATISTICAL MECHANICS

For all positive values

0 < v,w <∞,

a model Lagrangian of the oscillating system

Lδ(v, w)
def
==

def
==

∞∫
0

[
C2

δ2
· e−(v+w)u

(1 + e−vu) (1 + e−wu)
− e−(v+w)u

]
du

is proposed.

When this system is placed in a thermostat, an entropy factor

Eδ(v, w)
def
==

def
== − ln

{
min (v, w)

2δ

e(vw)δ

}
min (v, w)

2δ

(vw)1/2+ δ

comes into play.

The product

{Lδ · Eδ}(v, w)
def
== Lδ(v, w) · Eδ(v, w)

resembles the collision term of Boltzmann’s kinetic equation
[5]. The free small parameter

0 < δ <
1

2

can be interpreted as a reciprocal temperature or as an imaginary
time [9].
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LEMMA. For a sufficiently large coupling constant C, the
positive definiteness property∑

j, k

{Lδ · Eδ}(vj , vk)fjfk ≥ 0

is valid with all finite sets of numbers

0 < vj <∞, − ∞ < fj <∞

and all δ.

On the microcanonical level, it is enough to prove the positive
definiteness [1] of the Nevanlinna-Pick kernels[

C2

δ2
· e−ve−w

(1 + e−v) (1 + e−w)
− e−ve−w

]
Eδ(v, w),

or, equivalently, of the elementary functions[
C2 − δ2

(
1 + e−v

) (
1 + e−w

)]
Eδ(v, w).

This was done by means [7] of the reproducing kernel Hilbert
space theory.

II. DIRICHLET ETA

Before we start out discussing the zeros of ζ(s), we need
some background. Our concern here is the precise definition of
the main object for the further study. Prior to the discussion on
this essential object, we now introduce some notation which
seems convenient for the present article.

It should be fixed that the Riemann zeta-function is defined
as the Dirichlet sum

ζ(s) =

∞∑
n=1

1

ns
, s

def
== σ + it,

where the series converges absolutely in the half-plane σ > 1.
The significance of this function grows from the fact that the
sum of the series may possess a holomorphic continuation
outside its region of convergence.

Because of the importance [3] placed upon its zeros inside
the critical strip 0 < σ < 1, one must show that ζ(s) admits
an analytic continuation at least into this area. Here is the first
reference to the Dirichlet eta-function

η(s)
def
==

(
1− 2

2s

)
ζ(s) =

∞∑
n=1

(−1)n+1

ns
,

σ > 0

that serves for such purpose.



III. QUANTUM FIELD THEORY

The passage from statistical mechanics to euclidean quantum
field theory needs dimensionality reduction [9].

Consider a positive definite Toeplitz form [4]

{Lδ · Eδ}(x− y)
def
== {Lδ · Eδ}

(
e (x−y)/2, e−(x−y)/2

)
=

= e xe y {Lδ · Eδ}(ex, ey).

It depends only on the difference of variables

−∞ < x, y <∞,

like in stationary systems whose features do not vary with time
(or in space).

Bring our system to normal coordinates that behave just like
the gas of uncoupled oscillators.

Now define the Green function with the help of the Fourier
transform

̂{Lδ · Eδ}(t)
def
==

∞∫
−∞

e−ixt{Lδ · Eδ}(x) dx ≥ 0.

It is nonnegative everywhere along

−∞ < t <∞

due to the Bochner theorem [8].

Our Green function can be calculated as a convolution [6]

̂{Lδ · Eδ}(t) =
L̂δ ? Êδ(t)

2π
=

=
2

π

∞∫
−∞

∣∣∣∣Γ(1

2
+ iτ

)∣∣∣∣2
{
C2

δ2

∣∣∣∣η(1

2
+ iτ

)∣∣∣∣2 − 1

}
×

× δ3 dτ

[δ2 + (τ − t)2]
2

and even expressed through creation and annihilation operators.
Such approach via second quantization was also developed.

In a certain way, resonance poles of the propagator

Êδ(t) =
4δ3

(δ2 + t2)
2

may be construed as elementary excitations or quasiparticles.
The inverse effective masses of excitons must be computed
with the help of residues. Denote by

%
def
==

1

2
+ iγ

any zero of ζ(s) on the critical line. The equality

lim
δ ↓ 0

2

πδ2

∞∫
−∞

∣∣∣∣{Γ · η}(1

2
+ iτ

)∣∣∣∣2 δ3 dτ

[δ2 + (τ − γ)2]
2 =

= |{Γ · η}′(%)|2

clarifies the role of the derivative at zeta zeros.

The key inequality

lim
δ ↓ 0

̂{Lδ · Eδ}(γ) =

= |Γ(%)|2
{
C2
∣∣1− 21−%

∣∣2 |ζ ′(%)|2 − 1
}
≥ 0

holds for all nontrivial zeta zeros on the critical line.

THEOREM. The lower bound

|ζ ′(%)| ≥ 1

3 · C
= c > 0

is a gap in the activation energy spectrum.

Our efforts have principally been directed toward getting
information about gaps between zeta zeros.

IV. GAPS BETWEEN ZEROS

Let us apply the trick which is worth knowing because it
turns up in a variety of contexts. For the consecutive pair γn
and γn+1, one can write

0 =

γn+1∫
γn

ζ ′
(

1

2
+ it

)
dt =

= −
γn+1∫
γn

ζ ′
(

1

2
+ it

)
d(γn+1 − t) =

= (γn+1 − γn) ζ ′
(

1

2
+ iγn

)
+

+ i

γn+1∫
γn

(γn+1 − t) ζ ′′
(

1

2
+ it

)
dt

and conclude that

− i
ζ ′(1/2 + iγn)

γn+1∫
γn

(γn+1 − t) ζ ′′
(

1

2
+ it

)
dt =

= γn+1 − γn.

In fact, this is a realistic way of bounding the gaps from below.
One can make use of the inequality∣∣∣∣ζ ′(1

2
+ iγn

)∣∣∣∣ > c > 0

and get for γn →∞ an estimate

γn+1 − γn =

= O

{
(γn+1 − γn)2 max

γn<t<γn+1

∣∣∣∣ζ ′′(1

2
+ it

)∣∣∣∣} .
In order to find low bounds{

max
γn<t<γn+1

∣∣∣∣ζ ′′(1

2
+ it

)∣∣∣∣}−1 � γn+1 − γn

for all natural n, let us say a few words about the growth of
the zeta-function along the critical line.



V. SEPARATION CONDITION

The order of growth

µ(σ) = lim sup
t→∞

ln |ζ(σ + it)|
ln t

should not be confused with the Möbius function. Due to the
functional equation, it is sufficient to consider only the values
σ ≥ 1/2. Moreover, µ(σ) is a continuous, nonincreasing and
convex downwards function.

Our state of knowledge is not satisfactory, and the problem
of determining the precise order of growth is yet unsolved, so
we can focus on the central value

µ

(
1

2

)
.

We have an upper bound for this value that was improved
many times:
• Hardy and Littlewood gave the upper bound 1/6;
• Walfisz — 163/988;
• Titchmarch — 27/164;
• Phillips — 229/1392;
• Titchmarch — 15/92;
• Min — 19/116;
• Haneke and Jin-run — 6/37;
• Kolesnik — 35/216.

Recently, Bourgain [2] gave the estimate

13/84 = 0.154 . . . ,

which broke the 0.16-barrier.
His result can be transferred to the second derivative∣∣∣∣ζ ′′(1

2
+ it

)∣∣∣∣ = O
(
t0.16

)
,

t→∞

through the Cauchy formula.
COROLLARY. Compare this estimate with the last inequality

and see that the separation condition

γ− 0.16
n � γn+1 − γn

holds for n→∞.
The Lindelöf hypothesis claims that

µ(σ) =

 0, σ ≥ 1/2

1/2− σ, σ < 1/2,

but the exact value of µ(σ) remains unknown.

VI. PERSPECTIVES

According to Brillouin and Parodi, the band gap effect
is closedly connected with the propagation of waves in the
periodic structures. Indeed, the Lindelöf hypothesis combined
with the theorem above leads to the separation condition of
such kind. Goldston stressed that the existence of a Siegel
zero would force all the gaps between the consecutive zeros
in a certain large range to never be closer than half times
average spacing, and also have more unlikely but still possible

properties. He underlined that all existing methods exhibit the
presumed barrier at half times average spacing for small gaps,
and we do not know any infinite sequences of non-zero gaps
much shorter than the average spacing.

Thus, the very strange but stubborn Alternative hypothesis
suggests that, asymptotically, the normalized gaps

γn ln γn − γn+1 ln γn+1

2π

between the consecutive zeros %n and %n+1 are all nonzero
integers or half-integers.

It is known that pursuing consequences of this conjecture
will shed light on two mysterious problems — the problem of
existence of infinite number of twin primes and the problem
of the existence of infinite number of Siegel zeros.

VII. GENERALIZATIONS

Is not hard to generalize our theorem for the zeros

% =
1

2
+ ε+ iγ

outside the critical line.

Namely, one can repeat the same reasoning with respect to
the modified Lagrangian

∞∫
0

[
C2

δ2
· e−(v+w)u

(1 + e−vu) (1 + e−wu)
− e−(v+w)u

]
du

uε

and obtain the same gap at the bottom of the energy spectrum.
Mutatis mutandis, the method also works for the beta-function

β(s)
def
==

∞∑
n=0

(−1)n

(2n+ 1)s
, σ > 0.

In such a case, the author employed the model
∞∫
0

[
C2

δ2
· e−(v+w)u

(1 + e−2vu) (1 + e−2wu)
− e−(v+w)u

]
du

uε

to establish the band gap.

VIII. FORMULAS

The entropy characteristic

Eδ(x)
def
== Eδ

(
e x/2, e−x/2

)
= (1 + δ|x|)e−δ|x|

reveals the Boltzmann factor of the canonical ensemble.

Obtain it from the definition

Eδ(v, w)
def
== − ln

{
min (v, w)

2δ

e(vw)δ

}
min (v, w)

2δ

(vw)1/2+ δ

by the straightforward substitution. The formula

Êδ(t) =
4δ3

(δ2 + t2)
2

defines the correspondent spectral selection filter.

So we are led to a Brownian oscillator with the viscosity δ.



Note that it is a question of the Fourier transform

Êδ(t)
def
==

∞∫
−∞

e−ixtEδ(x) dx =

=

∞∫
−∞

e−ixt (1 + δ|x|) e−δ|x| dx.

Start from the integral
∞∫
−∞

e−ixte−δ|x| dx =
1

δ − it
+

1

δ + it
=

2δ

δ2 + t2
=

=
2δ3

(δ2 + t2)2
+

2δt2

(δ2 + t2)2

and get the first moment
∞∫
−∞

e−ixt δ|x| e−δ|x| dx = − δ d

dδ

∞∫
−∞

e−ixte−δ|x| dx =

=
2δ3

(δ2 + t2)2
− 2δt2

(δ2 + t2)2
.

The sum of two integrals gives us the desired answer.

The Lagrangian takes the form

Lδ(v, w)
def
==

def
==

∞∫
0

[
C2

δ2
· e−(v+w)u

(1 + e−vu) (1 + e−wu)
− e−(v+w)u

]
du =

=
C2

δ2

∞∑
n,m=1

(−1)n+m

nv +mw
− 1

v + w
.

Derive it from the very definition integrating the series

e−vue−wu

(1 + e−vu) (1 + e−wu)
=

=

∞∑
n,m=1

(−1)n+m exp {− (nv +mw)u}

termwise.

The characteristic of the Lagrangian

Lδ(x)
def
== Lδ

(
e x/2, e−x/2

)
=

=
C2

δ2

∞∑
n,m=1

(−1)n+m

nex/2 +me−x/2
− 1

ex/2 + e−x/2
=

=
C2

δ2

∞∑
n,m=1

(−1)n+m

2
√
nm cosh

(
x+ lnn− lnm

2

) −
− 1

2 cosh
(
x
2

)
is decomposable into the double series.

Let us assume the translation principle of harmonic analysis
to be known. Shifts of a secant

1

2 cosh
(
x
2

)
to various independent lags

lnn,− lnm

with parallel divisions by numbers
√
nm

act on the related Fourier transform as multipliers

nit ·m−it√
n ·
√
m
.

Therefore, the final formula

L̂δ(t)
def
==

∞∫
−∞

e−ixtLδ(x) dx =

=

∞∫
−∞

e−ixt dx

2 cosh
(
x
2

) {C2

δ2

∞∑
n,m=1

(−1)
n+m · nit ·m−it√
n ·
√
m

− 1

}

defines the spectral amplitude.
The function

∞∫
−∞

e−ixt dx

2 cosh
(
x
2

) =
π

cosh(πt)
=

∣∣∣∣Γ(1

2
+ it

)∣∣∣∣2
is a well-known table integral. On the other hand, the equality

∞∑
n,m=1

(−1)n+m · nit ·m−it√
n ·
√
m

=

∣∣∣∣η(1

2
+ it

)∣∣∣∣2
holds.

Now when it comes to the Källén - Lehmann representation,
the spectral amplitude

L̂δ(t) =

∣∣∣∣Γ(1

2
+ it

)∣∣∣∣2
{
C2

δ2

∣∣∣∣η(1

2
+ it

)∣∣∣∣2 − 1

}
is expressed through the Riemann zeta.
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